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The author examines solutions of the problem of  nonsteady heat  conduction in ferromagnetic plates with 
internal heat  sources, whose intensity depends on the coordinates and t ime .  

So-cal led  acce le ra ted  induction heating [1] can be appl ied in a number of processes requiring thorough heating of  
me ta l  parts. One such process is the tempering of  steel plates. Since the length and width of  the pIate usually exceed 
the thickness by more than ten t imes and the current level  in induction heat ing is constant over the whole surface of  the 
plate,  except  at the corners, the temperature field in the central  part of  the plate  may be considered one-dimensional  
and the same as the temperature field for an infini te plate,  for which the Fourier heat  conduction equation has the form 

aT O~T a 
- -  - -  a ~ = - -  W ( x ,  t ) .  ( 1 )  
Ot Ox 2 k 

Since for all  types of steel the tempering temperature  is lower than the magne t ic  transformation temperature,  
throughout the tempering process the steel  preserves its ferromagnetic  properties. In the induction heat ing of  a ferromag-  
netic steel  p la te  the induced current density decreases l inear ly  from the surface of the plate  to a layer  of  m e t a l  lying at  

depth xt; beyond the l imits  of a layer  of  thickness x~ the induced current density is zero [2]. With such an induced cur-  
rent density distribution the distribution function of  the internal  hea t  sources over the thickness of the plate  

( x)2 3P0 (t___Q) 1--  for 0 .~- x .< xl, 
w (x, t) = . . . .  

0 for Xl.~X.~d/2. 

( 2 )  

The value of the coordinate x = 0 corresponds to the surface of the plate,  the value  x = d /2  to the center of  the 
plate.  From the data of  [2], x t = 1.46A e. The depth of  penetrat ion of  the e lec t romagnet ic  field into the me ta l  

The e lec t r ica l  conductivity of the steel y and the re la t ive  magnet ic  permeabi l i ty  at the surface of the plate  t~ e do 
not remain  constant during the heat ing process. The e lec t r ica l  conductivi ty of  the  steel decreases with increase in t em-  
perature, but during acce le ra ted  induction heat ing ~e increases because of  the decrease in specif ic  power. But since in 
induction heating the surface layer of  the steel part is always in a state of  magnet ic  saturation, the degree of increase in 

ge is not great. The opposing nature of the changes in T and ~e allows o n e t o  assume that ]/YP'e and therefore the quan- 
tit ies A e and xl, are constant throughout the process of acce lera ted  heating.  

The in i t ia l  conditions are 

T(x ,  O) = O, (3) 

i. e . ,  during heating the temperature  is ca lcu la ted  from the ini t ia l  tempera ture  of the pla te  which is taken as zero. 

The boundary conditions are: 

aT(d~2, t) = 0 ,  aT(O, t) - -0 .  (4) 
Ox Ox 

The first of these conditions follows from the symmetry of the temperature  distribution over the thickness of  the 

plate; the second boundary conditio.t indicates absence of heat  exchange with the environment.  Heat losses from the 

surface of  a plate  during induction heat ing in a l ined inductor are usually smal l  (par t icular ly  at  temperatures below the 

Curie point); moreover,  if  the heater  operates continuously, the temperature  of  the l ining at  the commencement  of heat-  

ing is s ignif icantly greater than the temperature  of  the plate; consequently,  there is a certain hea t  flow from the l ining 

to the plate  which, after a certain t ime ,  reverses direction.  Al l  this indicates that the second of  conditions (4) holds ap- 

proximate ly  true. 
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The problem is solved by the method of separation of variables. Applying this method, we obtain 

T (x, t) = ~ Po (v) dv + 

oo 

+ ~ n~-T--- cos n ~ P0 (~) exp n ~ =2 (~ __ ~) d,, , (5) 

where 9(n,  a )  = 1 - sin(mra)/nrra,  a = 2xffd is a parameter  characterizing the degree of  development of the surface 
effect, 3 = 2x/d is a relat ive coordinate, r = 4at /d 2 dimensionless t ime  (Fourier number), and v the variable of integra- 
tion. 

In the first stage of accelerated heating, during which the surface temperature of  the plate increases to the re-  
quired final value, the specific power p0(r) = P00 is constant. In this case (5) can easily be integrated even for the first 
stage of heating 

T(x, t) = Pood ~ +  12 ~p(n, ~) 
2k ~ - ~  

cos n =[~ [1-- exp (--  tZ 2 "~2"c)]}. (6) 
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Fig. 1. Dependence of Ki o on "r 0: 
I)~=0; 2) 0.2; 3) 0.4;4)0.6; 
5) 1 

Formula (6) is inconvenient for calculations because of the slow convergence of the series. If this series is made to 
correspond with the expression in square brackets, in the form of a difference of two series, then the series not contain- 

ing the multiplier  exp(-nZTrzr) can be summed. After the necessary transformations, 
we obtain 

dn 
T ( x ,  t) = ,-oo___7_- [.c + S ( a ,  ~, .c)], (7) 

2k 

1 S (=, 6, =) = - -  -- 

3 

~2 ~2 

12 ' ~  q)(n,c~) 
cos n ~ e x p  ( - -  n ~ ~%), 

7c4cr 2 ~ rLr 

= 
-~ (1--13/=)' for 0 - ~ < = ,  

0 for ~-C ~-< 1. 

The series in ("7) converges much faster than that in (6). To compute the func- 
tion S(oq 3, r) when r - 0.05 it is sufficient to take 2-S terms of the series. To cal- 

culate the specific power in the first stage of heating we substitute in (7) the required 

surface temperature T O , the relative coordinate of the surface of the plate ~ = 0, and 

the duration of the first stage r e . After this substitution we obtain 

I<io = [So + S (~, 0, ~o)] -1 .  (8) 

The dependence of the dimensionless specific power (Kirpichev number) in the first stage of heating Ki 0 = P00d/ 

/2XT 0 on r 0 and ot is presented in Fig. i. 

In the second stage of accelerated heating it is necessary to regulate the specific power in such a way that the sur- 

face temperature of the plate remains constant and equal to T 0, which requires a smooth decrease in specific power. For 

smooth regulation of the specific power it would be necessary to make an inductor with a conductor of continuously vary- 

ing width, which involves serious technical difficulties. For accelerated heating Yaitskov [i] used inductors consisting of 

several discrete sections, connected in series, in each of which the width of the conductor and, consequently, the pitch 

of the turns and the specific power transmitted to the plate were constant. In the heating process the steel plate travels 

through the inductor, passing through each section in turn. 

If the second stage of heating is separated into k steps of duration ~'I, rz .... ' ~'k' in each of which the specific 
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power is constant, then from (5) it is possible to derive the recursion formula 

Ki i = 1- -  Kin -kS 0, - - S  0, 2 X 
n ~ O  = m ~ n - } -  1 

(9) 
X [ z ~ + S ( a ,  O, ~i)] -1 ,  i = 1 , 2  . . . .  , te, 

where Ki i = P0id/2kT 0, ~'i = 4ati/dZ are values of  Kirpichev and Fourier numbers for the i- th step in the second heating 
stage. 

By analogous transformations it is possible to find that, for stepwise variation in specific power, the temperature 
distribution over the thickness of  the plate in the i- th step of the second stage of heating 

[ T~(x, t ) = T 0  Ki~ ~ + S  ~ , [ 5 , ~ +  ~m - -  

n~D trt~rt 

- s  +Ki  0 , 

i = 1 , 2  . . . . .  k, 

where 0 _ < r _ < r  i. 

It is not difficult to see that the product Kiir i is equal to the increase in the mean relative temperature of  the 
plate upon completion of the i- th step. For the entire second stage this increase is 

k 

AT11 : 2 K i . ~  = T '  - -  Ki o ~o, (11) 

r t :  1 

where T' = T m / T  0 is the required value of the mean relative temperature of the plate at the very end of the heating pro- 
CeSS. 

With stepwise regulation of  the specific power the surface temperature of  the plate can not remain strictly con- 
s lant  during the second stage of  heating. The value of the surface temperature will be equal to T o only at the edges of 
the steps, and inside each step of the second stage a dip in surface temperature will inevitably occur. In order that, for 
a small number of heating steps, these dips may be small, there must be a smooth change in specific power, i . e . ,  the 
duration of  the steps must increase toward the end of the heating process, and the value of specific power in these steps 
must decrease correspondingly by the same factor. This requirement will be fulfilled if  the increase in the mean t em-  
perature of the plate in the second stage of  heating is divided equally between all the steps of the second stage, i, e . ,  

Ki i ~ ---- ATI I / k ,  i = 1,2 . . . .  , k. (12) 

Combining (9) and (12), we obtain a system of two equations in two unknowns: Ki i and r i. The value of AT;I is deter- 
mined from (11). After determining the Kirpichev and Fourier numbers for each of  the steps of  the second stage from 
(10), we can find the temperature distribution over the thickness of  the plate at any instant of t ime during the second 
stage of heating. 

The total duration of  the process of  accelerated heating is 

k 

% = % + Z %. 
Ci3) 

i = l  

The more steps there are in the second stage, the more closely will the surface temperature of  the plate be main-  
tained constant and, consequently, the shorter the total heating process. 

But increasing the number of heating steps increases the complexity of the inductor, which must then consist of a 
larger number of sections. 

For accelerated induction heating of round bars inductors consisting of four sections are employed [1]. In first sec- 
tion the surface temperature is raised, and in the remainder maintained constant. Operation of  such inductors shows that, 
even with three steps in the second heating stage, fluctuations in surface temperature are small and have practically no 
effect on the duration of  heating. Apparently, th=ee steps in the second stage are sufficient for the accelerated heating 
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of steel slabs, 

The graphs in Fig. 2 presented the results of  solving the system of Eqs. (9) and (12) for each of the three steps in 
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Fig. 2. Dependence of  r i (continuous lines) and Ki i (broken lines) on r0 for T '  = 0.98 
in the first (a), second (b), and third (c) steps of  the second stage of heating: 1)  a = 0; 
2) O. I; 3) O. 2; 4) 0.4; 5) O. 6; 6) I. 

the second stage o f  heating with T '  = 0. 98. Becau~ the form of  the curve of temperature distribution over the thickness 
of the plate at the very end of the heating process is close to parabolic, at T '  = 0.98 the temperature drop between the 
surface and center of the plate at the end of  heating is AT ~ 0.03T 0. If, for example, T o ~. 650~C, then AT ~ 20~ 
Such a small value of AT is perfectly acceptable not only in tempering, but also in 
any other technological operation. 

Using the results of  the calculations, we have plotted in Fig. 3 the dependence 
of the total duration of  the accelerated heating process on the duration of the first 
stage for different ec. From Fig. 3 it follows that the minimum duration of  accelera-  
ted heating is obtained not at r o ~ O, as claimed in [1], but at some finite value of  
r0 which depends on a, i . e . ,  on the degree of  development of  the surface effect, The 
minima on the curves in Fig. 3 are attributable to the stepwise regulation of power. 
If  the specific power is continuously regulated, by keeping the surface temperature o f  

�9 the plate in the second stage of heating strictly constant, then the minimum of the 
total heating time will be at r0 -+ 0. 

Using the graphs of Figs. 1 and 2, we can calculate the accelerated induction 
heating of steel stabs of any thickness, at any current frequency, without engaging in 
unwieldy computations based on the formulas presented in this article. The value of  
r0 is determined from Fig. 3 in such a way that the total duration of the heating pro- 
cess is a minimum. 

Since the over-al l  process of  accelerated heating was divided into discrete t ime steps, the relation between which 
consists only in that the initial condition for any step is the temperature distribution over the thickness of  the plate at 
the end of  the previous  step, in finding specific values of  the power and t ime from the known values o f  Ki i and r i, we 
can use different values of  the coefficients a and k in differeut steps. Values of  these coefficients should be chosen in 
accordance with the approximately known value of  the mean temperature of the plate in each heating step. This sub- 
stantially increases the accuracy of the calculation, permitting account to be taken of  the temperature dependence of 
the thermophysical properties of  steel, 

If it is required to calculate accelerated heating for T '  # 0.98, it is still possible to use the graphs in Figs. !, 2a, 
and 2b, but it is necessary to recalculate values of  Ki 3 and r3 from the new value of the required increase in the mean 
temperature of  the plate in the final step of the second stage of  heating. In this case condition (12) will not be satisfied. 

In conclusion, it is necessary to point out that adherence to condition (12) is not mandatory in the calculation of 
accelerated heating. Condition (12) can be replaced by any other relationship between the quantities Kip r i, and AT~I. 
In this case it is necessary only to avoid a sharply irregular distribution of AT~I between the steps of the second stage, 
since the total duration of  the heating process may increase because of the extreme duration of that step in which the 
greatest fraction of the requited increase in mean temperature is imparted to the plate. 

0.o 0.8 1.2 N To 

Fig. 3. Dependence of rs on r0 

for a three-step second stage of 

accelerated heating and T' = 

= 0.98:I-6 see Fig. 2. 
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NOTATION 

T - temperature; t -- time; r - thermal conductivity: f - current frequency; 8o - 41r �9 I0 -~ henry/m - magnetic 

permeability of vacuum. 
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